指纹识别算法(每个人的指纹都是独一无二的,手机是如何识别的)
本文目录
每个人的指纹都是独一无二的,手机是如何识别的
指纹识别主要包括以下步骤:指纹图像采集、指纹特征提取和指纹匹配。为了进行指纹识别,必须获得指纹图像。指纹图像可以通过三种方式获得:光学指纹识别、电容指纹识别和射频指纹识别。第一,光学指纹识别。在该方案中,光源照射在指纹上,反射光被接收器接收,从而可以获得指纹的线条。然而,这种方法有一定的缺陷,即手指的清洁度影响指纹识别的效果。如果手指沾有更多灰尘,识别可能会出错。
第二,电容式指纹识别。由于手指的指纹不均匀,当指纹接触电容板时,凸部和凹部之间的距离将不同于板,从而导致每个电容板的电容不同。电容大的地方是凸起的条纹,电容小的地方是凹陷的地方,这样指纹条纹就可以识别出来。然而,如果手是湿的,很容易在识别中出错。由于水的导电性,当手潮湿时,指纹线通常不被识别,而水的“线”被识别。这也是为什么当手湿的时候电容式触摸屏通常是无效的。
第三,射频指纹识别。这种方法是通过从传感器本身发射射频信号并穿透手指表皮来控制和测量内层的线条来获得最佳指纹图像。这种方法甚至不需要手指接触识别模块,因此不会受到湿手指和脏手指的影响。这是目前最可靠的指纹识别方案。
在获得指纹图像后,提取指纹特征并记录一些详细的特征,通常包括端点、孤立点、分叉肢让点等。在指纹线中,指纹的端点和分叉点是最稳定和最容易获得的。特征提取相当于指纹采集。最后,指纹匹配是将现场采集历拍局的指纹与指纹数据库中存储的指纹特征进行比较,根据判断算法给出两个指纹的相似性得分,最后给出是否贺数为同一指纹的判断结果。此时,指纹识别完成。
怎样识别指纹
指纹识别技术主要涉及四个功能:读取指纹图象、提取特征、保存数据和比对。在一开始,通过指纹读取设备读取到人体指纹的图象,取到指纹图象之后,要对原始图象进行初步的处理,使之更清晰。接下来,指纹辨识软件建立指纹的数字表示——特征数据,一种单方向的转换,可以从指纹转换成特征数据但不能从特征数据转换成为指纹,而两枚不同的指纹不会产生相同的特征数据。软件从指纹上找到被称为“节点”(minutiae)的数据点,也就是那些指纹纹路的分叉、终止或打圈处的坐标位置,这些点同时具有七种以上的唯一性特征。因为通常手指上平均具有70个节点,所以这种方法会产生大约490个数据。有的算法把节点和方向信息组合产生了更多的数据,这些方向信息表明了各个节点之间的关系,也有的算法还处理整幅指纹图像。总之,这些数据,通常称为模板,保存为1K大小的记录。无论它们是怎样组成的,至今仍然没有一种模板的标准,也没有一种公布的抽象算法,而是各个厂商自行其是。最后,通过计算机模糊比较的方法,把两个指纹的模板进行比较,计算出它们的相似程度,最终得到两个指纹的匹配结果。二. 取得指纹图象1.取象设备原理取像设备分成两类:光学、硅晶体传感器和其他。光学取像设备有最悠久的历史,可以追溯到20世纪70年代。依据的是光的全反射原理(FTIR)。光线照到压有指纹的玻璃表面,反射光线由CCD去获得,反射光的数量依赖于压在玻璃表面指纹的脊和谷的深度和皮肤与玻璃间的油脂。光线经玻璃设到谷后反射到CCD,而设到脊后则不反射到CCD(确切的是脊上的液体反光的)。由于最近光学设备的革新,极大地降低了设备的体积。最近90年代中期,传感器可以装在6x3x6英寸的盒子里,在不久的将来更小的设备是3x1x1英寸。这些进展取决于多种光学技术的发展而不是FTIR的发展。例如:纤维光被用来捕捉指纹图象。纤维光束垂直射到指纹的表面,他照亮指纹并探测反射光。另一个方案是把含有一微型三棱镜矩阵的表面安装在弹性的平面上,当手指压在此表面上时,由于脊和谷的压力不同而改变了微型三棱镜的表面,这些变化通过橡碧掘三棱镜光的反射而反映出来。应用晶体传感器是最近在市场上才出现的,尽管它在传奇文学作品中已经出现近20年。这些含有微型晶体的平面通过多种技术来绘制指纹图象。电容传感器通过电子度量被设计来捕捉指纹。电容设备能结合大约100,000导体金属阵列的传感器,其外面是绝缘的表面,当用户的手指放在上面时,皮肤组成了电容阵列的另一面。电容器的电容值由于金属间的距离而变化,这里指的是脊(近的)和谷(远的)之间的距离。压感式表面的顶层是具有弹性的压感介质材料,他们依照指纹的外表地形(凹凸)转化为相应的电子信号。温度感应传感器被设计为感应压在设备上的脊和远离设备的谷温度的不同。超声波扫描被认为是指纹取像技术中非常好的一类。很象光学扫描的激光,超声波扫描指纹的表面。紧接着,接收设备获取了其反射信号,测量他的范围,得到脊的深度。不象光学扫描,积累在皮肤上的脏物和油脂对超音速获得的图慧伏象影响不大,所以这样的图象是实际脊地形(凹凸)的真实反映。由于巨大的指纹辨别市场,如果想指纹识别在商业上的巨大成功,三个因素中的两个因素是非常重要的,它们是低价格和紧凑的体积(另外一个是上面谈到的识别率)。90年代初到后期,取像设备的价格已经剧烈的下降,制造商最近又承诺,在最近几年后,又要进行大幅度降价。至于体积,上面已经提到光学传感器的体积从6x3x3英寸降到3x1x1英寸。应用晶体的传感器的体积差不多是这样或者更小。在晶片上,集成电路的技术越来越高(如:数字化电路把指纹信号转化为数字信号强度),系统体积将越来越小,晶体传感器的体积接近与手指大小所需要的体积,其长宽大约是1x1英寸高不到1英寸。在晶体传感器之前,一些没有用到的机能是局部调整、软件控制、自动获取控制(AGC)技术。对于大多数光学设备,只能通过人工调整来改变图象的质量。然而,晶体传感器提供自动调节象素,行以及局部范围的敏感程度,从而提高图象的质量。AGC在不同的环境下结合反馈的信息梁核产生高质量的图象。例如,一个不清晰(对比度差)的图象,如干燥的指纹,能够被感觉并增强灵敏度,在捕捉的瞬间产生清晰的图象(对比度好);由于提供了局部调整的能力,图象不清晰(对比度差)的区域也能够被检测到(如:手指压得较轻的地方)并在捕捉的瞬间为这些象素提高灵敏度。光学扫描也有自己的优势。其中之一在较大的模型可以做较大指纹取像区域。而制造较大的应用晶体传感器的指纹取像区域是非常昂贵的,所以应用晶体传感器的指纹取像区域小于1平方英寸,而光学扫描的指纹取像区域等于或大于1平方英寸。然而这个对于较小的光学扫描设备并不是优势。较小的光学扫描也是较小指纹取像区域,这是因为较大的指纹取像区域需要较长的焦点长度,所以要有较大包装,否则如果较大的取像区域使用较小的包装,则光学扫描设备会受到图象边缘线形扭曲的影响。晶体传感器技术最重要的弱点在于,它们容易受到静电的影响,这使得晶体传感器有时会取不到图象,甚至会被损坏,另外,它们并不象玻璃一样耐磨损,从而影响了使用寿命。总之,各种技术都具有它们各自的优势,也有各自的缺点。我们在下面给出三种主要技术的比较。比较项目 光学全反射技术 硅晶体电容传感技术 超声波扫描体 积 大 小 中耐 用 性 非常耐用 容易损坏 一般成像能力 干手指差,但汗多的和稍脏的手指成像模糊 干手指好,但汗多的和稍脏的手指不能成像 非常好耗 电 较多 较少 较多成 本 低 低 很高2. 图象增强刚获得的图象有很多噪音。这主要由于平时的工作和环境引起的,比如,手指被弄脏,手指有刀伤、疤、痕、干燥、湿润或撕破等。图象增强是减弱噪音,增强脊和谷的对比度。想得到比较干净清晰的图象并不是容易的事情。为这个目标而为处理指纹图象所涉及的操作是设计一个适合、匹配的滤镜和恰当的阀值。指纹还有一些其他的有用的信息。比如:类似于脊的“多余的部分”,即使一些特别的脊不连续,但仍可认为是脊的一部分,从而决定他的走向。我们可以利用这些“多余的信息”。有很多图象增强的方法。大多数是通过过滤图象与脊局部方向相匹配。图象首先分成几个小区域(窗口),并在每个区域上计算出脊的局部方向来决定方向图。可以由空间域处理,或经过快速2维傅立叶变换后的频域处理来得到每个小窗口上的局部方向。设计合适的,相匹配的滤镜,使之实用于图象上所有的象素(空间场是其中的一个)。依据每个象素处脊的局部走向,滤镜应增强在同一方向脊的走向,并且在同一位置,减弱任何不同于脊的方向。后者含有横跨脊的噪音,所以其垂直于脊的局部方向上的那些不正确的“桥”会被滤镜过滤掉。所以,合适的、匹配的滤镜可以恰到好处地确定脊局部走向的自身的方向,它应该增强或匹配脊而不是噪音。图象增强,噪音减弱后,我们准备开始选取一些脊。虽然,在原始灰阶图象中,其强度是不同的而按一定的梯度分布,但它们真实的信息被简单化为二元:脊及其相对的背景。二元操作使一个灰阶图象变成二元图象,图象在强度层次上从原始的256色(8-bits)降为2色(1-bits)。图象二元化后,随后的处理就会比较容易。二元化的困难在于,并不是所有的指纹图象有相同的阀值,所以一般不采取从单纯的强度入手,而且单一的图象的对照物是变化的,比如,手在中心地带按的比较紧。因此一个叫“局部自适应的阀值(locally adaptive thresholding)”的方法被用来决定局部图象强度的阀值。在节点提取之前的最后一道工序是“细化(thinning)”。细化是将脊的宽度降为单个象素的宽度。一个好的细化方法是保持原有脊的连续性,降低由于人为因素所造成的影响。人为因素主要是毛刺,带有非常短的分支而被误认为是分叉。认识到合法的和不合法的节点后,在特征提取阶段排除这些节点。三. 指纹识别技术的基本原理指纹其实是比较复杂的。与人工处理不同,许多生物识别技术公司并不直接存储指纹的图象。多年来在各个公司及其研究机构产生了许多数字化的算法(美国有关法律认为,指纹图象属于个人隐私,因此不能直接存储指纹图象)。但指纹识别算法最终都归结为在指纹图象上找到并比对指纹的特征。指纹的特征我们定义了指纹的两类特征来进行指纹的验证:总体特征和局部特征。总体特征是指那些用人眼直接就可以观察到的特征,包括:基本纹路图案环型(loop), 弓型(arch), 螺旋型(whorl)。其他的指纹图案都基于这三种基本图案。仅仅依靠图案类型来分辨指纹是远远不够的,这只是一个粗略的分类,但通过分类使得在大数据库中搜寻指纹更为方便。模式区(Pattern Area)模式区是指指纹上包括了总体特征的区域,即从模式区就能够分辨出指纹是属于那一种类型的。有的指纹识别算法只使用模式区的数据。 Aetex 的指纹识别算法使用了所取得的完整指纹而不仅仅是模式区进行分析和识别。核心点(Core Point)核心点位于指纹纹路的渐进中心,它用于读取指纹和比对指纹时的参考点。三角点(Delta)三角点位于从核心点开始的第一个分叉点或者断点、或者两条纹路会聚处、孤立点、折转处,或者指向这些奇异点。三角点提供了指纹纹路的计数和跟踪的开始之处。式样线( Type Lines)式样线是在指包围模式区的纹路线开始平行的地方所出现的交叉纹路,式样线通常很短就中断了,但它的外侧线开始连续延伸。纹数( Ridge Count)指模式区内指纹纹路的数量。在计算指纹的纹数时,一般先在连接核心点和三角点,这条连线与指纹纹路相交的数量即可认为是指纹的纹数。 局部特征 局部特征是指指纹上的节点。两枚指纹经常会具有相同的总体特征,但它们的局部特征——节点,却不可能完全相同。节点(Minutia Points)指纹纹路并不是连续的,平滑笔直的,而是经常出现中断、分叉或打折。这些断点、分叉点和转折点就称为“节点”。就是这些节点提供了指纹唯一性的确认信息。指纹上的节点有四种不同特性:1. 分类 – 节点有以下几种类型,最典型的是终结点和分叉点A. 终结点(Ending) -- 一条纹路在此终结。B. 分叉点(Bifurcation) -- 一条纹路在此分开成为两条或更多的纹路。C. 分歧点(Ridge Divergence) -- 两条平行的纹路在此分开。D. 孤立点(Dot or Island) -- 一条特别短的纹路,以至于成为一点E. 环点(Enclosure) -- 一条纹路分开成为两条之后,立即有合并成为一条,这样形成的一个小环称为环点F. 短纹(Short Ridge) -- 一端较短但不至于成为一点的纹路,2. 方向(Orientation) -- 节点可以朝着一定的方向。3. 曲率(Curvature) -- 描述纹路方向改变的速度。4. 位置(Position) -- 节点的位置通过(x,y)坐标来描述,可以是绝对的,也可以是相对于三角点或特征点的。四. 系统问题(system issues)有效的指纹辨识系统不仅仅依赖于辨识算法,还有其他的一些重要因素,这里称之为“系统问题”。包括注册和辨识过程,速度和工作学、用户信息的反馈、排斥欺骗和安全考虑。 为了得到较好的识别率,重要的是在注册时尽量获得最好的指纹图象,这是因为注册一般只进行一次,而以后的辨识是经常的。一个较好的指纹识别系统应要求用户的指纹在登记指纹时多次获取指纹,然后,把最好的指纹或每次获得的指纹的综合的结果作为注册的指纹。又一个方法可以作为指纹系统设计时的考虑,即我们可以多次取像直到得到一个确定的匹配,但这个过程在降低了拒判率的同时,提高了误判率。辨识不仅仅只用一个手指的指纹,可以用两个或更多的手指的指纹,这样可以增强识别率,当然这样一来会浪费用户的许多时间。系统的工作学是很重要的。例如:在个人识别系统中,人们愿意等待时间的极限,这个极限时间根据特定的应用而不同,依赖于在处理的过程中人们正在做什么。例如:刷卡或输入ID号的过程,从0.5-1.5秒被认为是可接受的时间;另外,拒判而重复次数不应超过3次。验证和辨识的过程、取像设备的设计拒判率和误判率关系的设定,为了尽可能的获得高质量的指纹图象而提示用户手指该怎样放置,正确的反馈信息是非常有用的。如“手指放得太高”,“手指按得不够重”等。在指纹识别系统中,反欺骗的措施用来阻止人造指纹、死指纹和残留指纹。残留指纹是由于皮肤油或其他原因残留在传感器上。传感器应建立反欺对策,使得有能力识别真实的皮肤温度、阻力或电容。既然指纹识别系统是为安全而考虑的,例如,节点模板数据库必须是安全的,以防止一个冒名顶替的人将自己的指纹存进数据库而成为合法的用户。指纹匹配的结果是“YES”或“NO”,以此获得访问权。如果有人简单地绕过指纹匹配而能去直接发送一个“YES”,那么系统就是不安全的。这个问题的解决是确保主机接收的识别结果是来自真正的合法用户,如通过数字信号发送给主机。总之,在一个完整的指纹识别应用系统中有许多问题值得考虑,解决好这些问题有助于成功地建立有效的系统,相反,则有可能会使得高明的技术被束之高阁,甚至导致应用系统最后的失败。
指纹识别有哪几种
1 指纹识别的原理和方法 1.1 指纹的特征与分类 指纹识别学是一门古老的学科,它是基于人体指纹特征的相对稳定与唯一这一统计学结果发展起来的。实际应用中,根据需求的不同,可以将人体的指纹特征分为:永久性特征、非永久性特征和生命特征。即给定一组图像,然后依次两两组合,提交进行比对,统计总的提交比对的次数以及发生错误的次数,并计算出出错的比例,就是FRR和FAR。针对FAR=0.0001%的指标,应采用不少于1 415幅不同的指纹图像作循环测试,总测试次数为1 000 405次,如果测试中发生一次错误比对成功,则FAR=1/1 000 405;针对FRR=0.1%,应采用不少于46幅属于同一指纹的图像组合配对进行测试,则总提交测试的次数为1 035次数,如果发生一次错误拒绝,则FRR=1/1 035。测试所采用的样本数越多,结果越准确。作为测试样本的指纹图像应满足可登记的条件。 2.3 系统参数 拒登率(error registration rate,ERR):指的是指纹设备出现不能登录及处理的指纹的概率,ERR过高将会严重影响设备的使用范围,通常要求小于1%。 登录时间:指纹设备登录一枚指纹所需的时间,通常单次登录的时间要求不超过2 s。 比对时间:指纹设备对两组指纹特征模版进行比对所耗费的时间,通常要求不超过1 s。 工作温度:指纹设备正常工作时所允许的温度变化范围,一般是0~40 ℃。 工作湿度:指纹设备正常工作时所允许的相对湿度变化范围,一般是30%~95%。
指纹识别是怎么进行的
导语:指纹识别技术通常使用指纹的总体特征如纹形、三角点等来进行分类,再用局部特征如位置和方向等来进行用户身份识别。尽管指纹只是人体皮肤的小部分,但是,它蕴涵着大量的信息。那么,接下来就让我们一起来具体的了解以下关于指纹识别是怎么进行的内容吧。文章仅供大家的参考!
指纹识别是怎么进行的
1.指纹图像的获取
指纹图像的采集是自动指纹识别系统的重要组成部分。早期的指纹采集都是通过油墨按压在纸张上产生的。20世纪80年代,随着光学技术和计算机技术的发展,现代化的采集设备开始出现。
传感器是一种能把物理量或化学量变成便于利用的电信号的器件。在测量系统中它是一种前置部件,它是被测量信号输入后的第一道关口,是生物认证系统中的采集设备。
这些传感器根据探测对象的不同,可分为光学传感器、热敏传感器和超声传感器;根据器件的不同,可分为CMOS器件传感器和CCD器件传感器。它们的工作原理都是:将生物特征经过检测后转化为系统可以识别的图像信息。在生物认证系统中,可靠和廉价的’图像采集设备是系统运行正常、可靠的关键。
2.指纹图像的增强
常见的预处理方法如下:
(1)采用灰度的均衡化,可以消除不同图像之间对比度的差异。
(2)使用简单的低通滤波消除斑点噪声、高斯噪声。
(3)计算出图像的边界,进行图像的裁剪,这样可以减少多余的计算量,提高系统的速度。
常用图像增强算法具体包括以下几种:
(1)基于傅里叶滤波的低质量指纹增强算法;
(2)基于Gabor滤波的增强方法;
(3)多尺度滤波方法;
(4)改进的方向图增强算法;
(5)基于知识的指纹图像增强算法;
(6)非线性扩散模型及其滤波方法;
(7)改进的非线性扩散滤波方法。
目前最新的分割算法有以下几种:
(1)基于正态模型进行的指纹图像分割算法;
(2)基于马尔科夫随机场的指纹图像分割算法;
(3)基于数学形态学闭运算的灰度方差法;
(4)基于方向场的指纹图像分割算法。
3.指纹特征的提取
近年来,新的指纹特征提取算法主要包括以下几种:
(1)基于Gabor滤波方法对指纹局部特征的提取算法。
(2)基于CNN通用编程方法对指纹特征的提取算法。
(3)基于IFS编码的图像数字化技术,即建立IFS模型,计算源图像与再生图像之间的相似性,快粗蠢衡速提取指纹图像的特征。
(4)基于脊线跟踪的指纹图像特征点提取算法。该算法可以直接从灰度指纹图像中有效提取细节点和脊线骨架信息。
(5)基于小波变换和ART(自适应共振理论)神经网络的指纹特征提取算法。
4.指纹图像的分类与压缩
常用的指纹分类技术有以下几种:
(1)基于规则的方法,即根据指纹奇异点的数目和位置分类。
(2)基于句法的方法。这种方法的语法复杂,推导语法的方法复杂、不固定。这种方法已经逐渐被淘汰了。
(3)结构化的方法,即寻找低层次的特征到高层次的结构之间相关联的组织。
(4)统计的方法。
(5)结合遗传算法和BP神经元网络的方法。
(6)多分类器方法。
常用的压缩算法有以下两种:
(1)图像压缩编码方法:包括无损压缩(熵编码)和有损压缩(量化)。
(2)基于小波变换的指纹压缩算法:包括WSQ算法、DjVu算法、改进的EZW算法等。
5.指纹图像的匹配
传统的指纹匹配算法有很多种:档纯
(1)基于岩做点模式的匹配方法:如基于Hough变换的匹配算法、基于串距离的匹配算法、基于N邻近的匹配算法等。
(2)图匹配及其他方法:如基于遗传算法的匹配、基于关键点的初匹配等。
(3)基于纹理模式的匹配:如PPM匹配算法等。
(4)混合匹配方法等。
近几年,又出现了如下新的匹配算法:
(1)基于指纹分类的矢量匹配。该法首先利用指纹分类的信息进行粗匹配,然后利用中心点和三角点的信息进一步匹配,最后以待识别图像和模板指纹图像的中心点为基准点,将中心点与邻近的36个细节点形成矢量,于是指纹的匹配就转变为矢量组数的匹配。
(2)基于PKI(Public Key Infrastructure,公钥基础设施)的开放网络环境下的指纹认证系统。
(3)实时指纹特征点匹配算法。该算法的原理是:通过由指纹分割算法得到圆形匹配限制框和简化计算步骤来达到快速匹配的目的。
(4)一种基于FBI(Federal Bureauof Investigation)细节点的二次指纹匹配算法。
(5)基于中心点的指纹匹配算法。该算法利用奇异点或指纹有效区域的中心点寻找匹配的基准特征点对和相应的变换参数,并将待识别指纹相对于模板指纹作姿势纠正,最后采用坐标匹配的方式实现两个指纹的比对。
指纹识别模块工作的原理是什么
指纹识别模块通常使用一个光学传感器来捕捉指纹图像。该传感器通过将一个光源照射到指纹上,然后通过捕捉反射回来的光线来创建图像。这些图像中包含了指纹的特征信息,如纹理和谷点。当用户在传感器上放置手指时,图像被捕捉并转换为数字信号。然后,这些数字信号被传递给一个算法,该算法用来识别和比对指纹。这些算法通常使用模板匹配来识别指纹。模板匹配技术将一个已知的指纹图像与当前捕捉到的图像进行比对。如果两个图像相似,则认为手指是合法的。除了光学传感器之外,还有其他类型的指纹识别传感器,如电容传感器和生物电传感器。这些传感器的工作原理略有不同,但蔽差灶基本上都是通过捕捉指纹的特征信息来识别指纹。指纹识别技术还可以结合其他生物特征识别方式,如人脸识别,声纹识别等。这样可以提高识别准确度和安全性。指纹识别在很多领域中被广泛应用,如智能手机、电脑登录、支付系统、门禁系统等。然而也有一些人担心指纹数据隐私问题,因此在使用指纹识别技术时需要保证数据安全性。在指纹识别系统中,通常需要在第一次使用时,将用户的指庆猛纹数据录入系统中,这个过程被称为指纹注册或指纹登记。在这个过程中,用户需要把自己的手指放在传感器上,传感器捕捉到的图像将被转化为数字模板,这个数字模板就是该用户的指纹信息。指纹识别系统中通常有两种模板,一种是原始模板,由于存储的原因,通常会对原始模板进行压缩。另一种是特征模板,特征模板是由原始模板提取出来的,它只包含指纹的关键信息。在识别过程中,传感器捕捉到的图像将被转换为数字信号,然后与数宏扮据库中的模板进行比对。比对是通过算法来完成的,如果捕捉到的指纹和数据库中的指纹匹配度高,则认为识别成功,否则识别失败。
指纹识别技术的算法
于指纹所具有的唯一性和不变性,以及指纹识别技术所具有的可行性和实用性,指纹识别成为目前最流行、最方便、最可靠的身份认证技术之一。指纹图像数据量大,通过直接比对指纹图像的方法老虚来识别指纹是不可取的,应该先对指纹图像进行预处理,然后提取出指纹的特征数据,通过埋州特征数据的比对来实现自动指纹识别。指纹图像预处理作为指纹自动识别过程的第一个环节,它的好坏直接影响着自动识别系统的效果。预处理通常包括滤波、方向图的求取、二值化、细化等几个步骤。 本文首先阐述了生物特征识别技术的基本概念,对自动弯含蔽指纹识别系统的组成也作了简要的介绍。然后对目前指纹图像预处理的一些常用算法进行了介绍,针对指纹图像的特征,采用了基于Gabor滤波器的指纹预处理方法,它为特征提取和比对奠定了良好的基础。 本文所提到的算法已在PC机上用Visual C++6.0编程实现,实验结果表明,这种方法能获得令人满意的指纹图像预处理效果。
指纹识别的原理是什么
原理:指纹纹路经常出现中断、分叉或转折,这些断点、分叉点和转折点被称为"特征点"。特征点提供了指纹唯一性的确认信息,正因为这些不同,才可以进行识别。
1、指纹识别的概念:
指纹识别是指通过比较不同指纹的细节特征点来进行鉴别的技术,可用于身份鉴定。
2、优点及其应用:
指纹识别技术拥有识别速度快、采集方便和价格低廉等优点,被广泛应用于图像处理、模式识别、计算机视觉等众多学科领域。
3、指纹特征:
特征点
指纹,英文名称为fingerprint,两枚指纹经常会具有相同的总体特征,但它们的细节特征,却不可能完全相同。 指纹纹路并不是连续的、平滑笔直的,而是经常出现中断、分叉或转折。这些断点、分叉点和转折点就称为"特征点"。
特征点提供了 指纹唯一性的确认信息,其中最典型的是终结点和分叉点,其他还包括分歧点、孤立点、环点、短纹等。特征点的参数包括方向( 节点可以朝着一定的方向)、曲率(描述纹路方向改变的速度)、位置(节点的位置通过x/y坐标来描述,可以是绝对的,也可以是相对于三角点或特征点的)。
总体特征
总体特征是指那些用人眼直接就可以观察到的特征。包括纹形、模式区、核心点、三角点和纹数等。
纹形, 指纹专家在长期实践的基础上,根据脊线的走向与分布情况一般将指纹分为三大类——环型(loop,又称斗形)、弓形(arch)、螺旋形(whorl)。
模式区即 指纹上包括了总体特征的区域,从此区域就能够分辨出指纹是属于哪一种类型的。有的指纹识别算法只使用模式区的数据,有的则使用所取得的完整指纹。
核心点位于 指纹纹路的渐进中心,它在读取指纹和比对指纹时作为参考点。许多算法是基于核心点的,即只能处理和识别具有核心点的指纹。
三角点位于从核心点开始的第一个分叉点或者断点,或者两条纹路会聚处、孤立点、折转处,或者指向这些奇异点。三角点提供了 指纹纹路的计数跟踪的开始之处。
纹数,即模式区内 指纹纹路的数量。在计算 指纹的纹路时,一般先连接核心点和三角点,这条连线与指纹纹路相交的数量即可认为是指纹的纹数。
局部特征
局部特征指纹节点的特征。指纹的纹路并不是连续、平滑笔直的,经常会出现分叉、折转或中断。这些交叉点、折转点或断点称为"特征点",它们提供了指纹唯一性的确认信息。特征点的主要参数包括:
方向:相对于核心点,特征点所处的方向。
曲率:纹路方向改变的速度。
位置:节点的位置坐标,通过x/y坐标来描述。它可以是绝对坐标,也可以是与三角点(或特征点)的相对坐标。
更多文章:
华硕k53sd主板(华硕笔记本电脑型号a53s,mbver:k53sd,id:3d,这是什么意思呀)
2024年2月29日 04:30
磐正主板bios设置硬盘模式(磐正主板BIOS里面怎么改legacy ide)
2024年8月27日 21:40
大神note3跑分(红米note3手机(性价比高又好用的手机)参数配置和图片)
2024年9月16日 02:40
htc evo 3d有几个版本(HTC EVO 3D,HTC X515d,HTC夺目3D,这三款手机有什么区别)
2024年8月28日 01:10