哥德巴赫猜想有什么意义(什么是哥德巴赫猜想)
什么是哥德巴赫猜想
哥德巴赫猜想 哥德巴赫猜想概述哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。 目录哥德巴赫介绍 来源 【小史】 【意义】 来源 1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"欧拉回信说:“这个命题看来是正确的".但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于6的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4.若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。 但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。 哥德巴赫猜想:1+2现在通常把这两个命题统称为哥德巴赫猜想。 【小史】 1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。也没有任何实质性进展。哥德巴赫猜想由此成为数学皇冠上一颗可望不可即的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。哥德巴赫猜想的传奇实际上是科学史上最传奇的历史(详见百度哥德巴赫猜想传奇)。 到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大偶数n的偶数都可以表示为九个质数的积加上九个质数的积,简称9+9。 需要说明的是,这个9不是确切的9,而是指1,2,3,4,5,6,7,8,9中可能出现的任何一个。又称为“殆素数”,意思是很像素数。与哥德巴赫猜想没有实质的联系。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。 目前“最佳”的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。“充分大”陈景润教授指大约是10的500000次方,即在1的后面加上500000个“0”,是一个目前无法检验的数。所以,保罗赫夫曼在《阿基米德的报复》一书中的35页写道:充分大和殆素数是个含糊不清的概念。 ■哥德巴赫猜想证明进度相关 在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。 1932年,英国的埃斯特曼证明了“6 + 6”。 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。 1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。 1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。 以上数学家在本国都得到奖励,但是没有一人获得国际数学联合会的认可,于是人们开始思考。王元院士在1986年9月在南开大学的讲话中明确地说明:不是一回事。(见“世界数学名题欣赏”《希尔博特第十问题》188页。辽宁教育出版社1987年版)。1996年7月17日,王元院士在中央电视台东方之子节目中也阐述了:哥德巴赫猜想仅指1+1。邱成桐院士认为,文学无论多么精彩,也不能够代替科学,2006年邱院士说,陈景润的成功是媒体造成的。一般认为,目前没有任何人对哥德巴猜想作过实质性的贡献。所有的证明都存在问题,与哥德巴猜想没有实质联系。 人们发现,如果去掉殆素数,(1+2)比(1+1)困难的多。(1+3)比(1+2)困难的多。 (1+1)是大于第一个素数“2”的1次方加1的偶数(即n》2+1)都是一个素数加上一个素数之和。 (1+2)是大于第二个素数“3”的2次方加1的偶数(即n〉3x3+1=10)都是一个素数加上二个素数乘积之和。例如12=3×3+3。 (1+3)是大于第三个素数“5”的3次方加1的偶数(即n〉5x5x5+1=126)都是一个素数加上三个素数乘积之和。例如128=5x5x5+3=5x5x3+53。小于128的偶数有21个不能够表示为(1+3),例如,4,6,8,10,12,14,16,18,20,22,24,26,28,36,42,54,72,96,114,120,126。 (1+4)是大于第四个素数“7”的4次方加1的偶数(即n〉7x7x7x7+1=2402)都是一个素数加上四个素数乘积之和。例如2404=2401+3。小于2404的偶数有几百个不能够表示(1+4)。 这是因为自然数数值越小,含素数个数多的合数越少。例如,100以内,有25个素数,有含2个素数因子的奇合数19个,含3个素数因子的合数有5个(27,45,63,75,99),含4个素数因子的合数仅1个(81)。实际上,哥德巴赫猜想只是这一类问题中难度最底端的问题。许多艰难的问题正等待人们去克服。 。 数学家认可的 `````````p-1``````````1````````````N r(N)≈2∏——∏(1- ————)—————— .........P-2......(P-1)^2.....(lnN)^2 r(N)为将偶数表为两个素数之和n=p+p`的表示个数, ∏表示各参数连乘,ln表示取自然对数,^2表示取平方数。 第一个∏的参数P是大于2的且属于该偶数的素因子的素数。 第二个∏的参数P是大于2且不大于√N的素数。 第一个∏的数值是分子大于分母,大于1。 第二个∏的数值是孪生素数的常数,其2倍数就=1.320..大于1。 N/(lnN)是计算N数内包含的素数的个数,(1/lnN)素数与数的比例。 有不少人论述了:(N数内包含的素数的个数)与(素数与数的比例)的乘积 大于一。 即:r(N)==(大于1的数)(大于1的数)(大于1的数)==大于1的数 值得推荐的论述为 由素数定理知:π(N)≈N/(lnN) π(N)≈(0.5)(N^0.5)==(0.5)(N^0.5)π(N^0.5), 1/(lnN)≈π(N)/N(0.5)==(0.5)π(N^0.5)/(N^0.5) 公式的主项==N/(lnN)^2==^2 约等于(一半的平方根内素数个数)的平方数。 即:在{一半的平方根内素数个数**大于一时,换一句话说就是: 第二个素数的平方数以上的偶数,公式的主项就大于1。 (注:下面的的五条结论来自非官方,仅供讨论) 一。陈景润证明的不是哥德巴赫猜想 陈景润与邵品宗合著的【哥德巴赫猜想】第118页(辽宁教育出版社)写道:陈景润定理的“1+1”结果,通俗地讲是指:对于任何一个大偶数N,那么总可以找到奇素数P’,P",或者P1,P2,P3,使得下列两式至少一式成立:“ N=P’+P" (A) N=P1+P2*P3 (B) 当然并不排除(A)(B)同时成立的情形,例如62=43+19,62=7+5X11。” 众所周知,哥德巴赫猜想是指对于大于4的偶数(A)式成立,【1+2】是指对于大于10的偶数(B)式成立, 两者是不同的两个命题,陈景润把两个毫不相关的命题混为一谈,并在申报奖项时偷换了概念(命题),陈景润也没有证明【1+2】,因为【1+2】比【1+1】难得多。 二。 陈景润使用了错误的推理形式 陈采用的是相容选言推理的“肯定肯定式”:或者A,或者B,A,所以或者A或B,或A与B同时成立。 这是一种错误的推理形式,模棱两可,牵强附会,言之无物,什么也没有肯定,正如算命先生那样“:李大嫂分娩,或者生男孩,或者生女孩,或者同时生男又生女(多胎)”。无论如何都是对的,这种判断在认识论上称为不可证伪,而可证伪性是科学与伪科学的分界。相容选言推理只有一种正确形式。否定肯定式:或者A,或者B,非A,所以B。相容选言推理有两条规则:1,否认一部分选言肢,就必须肯定另一部分选言肢;2,肯定一部分选言肢却不能否定另一部份选言肢。可见对陈景润的认可表明中国数学会思维混乱,缺乏基本的逻辑训练。 三。 陈景润大量使用错误概念 陈在论文中大量使用“充分大”和“殆素数”这两个含糊不清的概念。而科学概念的特征就是:精确性,专义性,稳定性,系统性,可检验性。“殆素数”指很像素数,拿像与不像来论证,这是小孩的游戏。而“充分大”,陈指10的50万次方,这是不可检验的数。 四。陈景润的结论不能算定理 陈的结论采用的是特称(某些,一些),即某些N是(A),某些N是(B),就不能算定理,因为所有严格的科学的定理,定律都是以全称(所有,一切,全部,每个)命题形式表现出来,一个全称命题陈述一个给定类的所有元素之间的一种不变关系,适用于一种无穷大的类,它在任何时候都无区别的成立。而陈景润的结论,连概念都算不上。 五。陈景润的工作严重违背认识规律 在没有找到素数普篇公式之前,哥氏猜想是无法解决的,正如化圆为方取决于圆周率的超越性是否搞清,事物质的规定性决定量的规定性。(王晓明 《中华传奇》杂志(哥德巴赫猜想传奇)1999年3期)陶慧洁责任 【意义】 一件事物之所以引起人们的兴趣,因为我们关心他,假如一个问题的解决丝毫不能引起人类的快感,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值,假如这件事情不能引起正义和美感,情操和热情就无法验证。 哥德巴赫猜想是数的一种表现次序,人们持久地爱好它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力。使我们难以跨越一些问题并无法欣赏。一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感。哥德巴赫猜想实际是说,任何一个大于3的自然数n.都有一个x, 使得n+x与n-x都是素数,因为,(n+x)+(n-x)=2n.这是一种素数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为素数这种似乎杂乱无章的东西被人们用自然数n对称地串联起来,正如牧童一声口稍就把满山遍野乱跑的羊群唤在一起,它使人心晃神移,又像生物基因DNA,呈双螺旋结构绕自然数n转动,人们从玄虚的素数看到了纯朴而又充满青春的一面。对称不仅是视觉上的美学概念,它意味着对象的统一。 素数具有一种浪漫的气质,它以神秘的魅力产生一种不定型的朦胧,相比之下,圆周率,自然对数。虚数。费肯鲍姆数就显得单纯多了,欧拉曾用一个公式把它们统一起来。而素数给人们更多的悲剧色彩,有一种神圣不可侵犯的冷漠。当哥德巴赫猜想变成定理,我们可以看到上帝的大智大慧,乘法是加法的重叠,而哥德巴赫猜想却用加法将乘性概括。在这隐晦的命题之中有着深奥的知识。它改变人们对数的看法:乘法的轮郭凭直观就可以一目了然,哥德巴赫猜想体现一种探索机能,贵贱之别是显然的,加法和乘法都是数量的堆积,但乘法是对加法的概括,加法对乘性的控制却体现了两种不同的要求,前者通过感受可以领悟,后者则要求灵感——人性和哲学。静观前者而神往于它的反面(后者),这理想的境界变成了百年的信仰和反思,反思的特殊价值在于满足了深层的好奇,是一切重大发现的精神通路,例如录音是对发音的反思结果,磁生电是对电生磁的反思结果。。。。顺思与反思是一种对称,表明一种活力与生机。顺思是自然的,反思是主动的,顺思产生经验,反思才能产生科学。顺思的内容常常是浅表的公开的,已知的。反思的内容常常是隐蔽的,未知的。反思不是简单的衷情回顾不是对经验的眷念,而是寻找事物本质的终极标准——-对历史真相或事物真相的揭示。 哥德巴赫猜想为什么会吸引人?世界上绝对没有客观方面能打动人的事物和因素。一件事之所以会吸引人,那是因为它具有某种特质能震动观察者的感受力,感受力的大小即观察者的素质。感人的东西往往是开放的。给人以无限遐思和暗示。哥德巴赫猜想以一种表面开朗简洁的形式掩盖它阴险的本质。他周围笼罩着一种强烈的朦胧气氛。他以喜剧的方式挑逗人们开场,却无一例外以悲剧的形式谢幕。他温文尔雅地拒绝一切向她求爱的人们,让追求者争风吃醋,大打出手,自己却在一旁看着一场有一场拙劣的表演。哥氏猜想以一种抽象的美让人们想入非非,他营造一种仙境,挑起人们的欲望和野心,让那些以为有点才能的人劳苦、烦恼、愤怒中死亡。他恣意横行于人类精神的海洋,让智慧的小船难以驾驭,让科研的‘泰坦尼克’一次又一次沉没。。。 人类的精神威信建立在科学对迷信和无知的胜利之上,人类的群体的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解。肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑。哥德巴赫猜想的哲学意义正在如此。 时代在等待名垂千古的英雄。 【魔鬼探源】素数充满了玄妙,它能把复杂的事物说得简单明了,也能把简单明了的事物变得复杂。前者靠直觉和洞察,后者靠联想和推理。素数是数学世界最风骚的舞女,是数学场上的交际花和狐狸精,它主宰着数论的秘密女王,,它是妖精的化身。照亮数论四周,像吸血鬼一样获得永生。而数学家则在它四周衰竭而亡。
哥德巴赫猜想有什么意义
人类的精神威信建立在科学对迷信和无知的胜利之上,人类的群体的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解。肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑。哥德巴赫猜想的哲学意义正在如此。
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。 从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
哥德巴赫猜想定理:令偶数为M,小于√M的素数为素因子。依据素数定理,只能被1和自身数整除的整数叫素数,得素数是不能被自身数以外的素数整除的数,那么,在偶数内不能被所有素因子整除的数,必然是素数或自然数1;依据等号两边同时除以一个相同的数,等式仍然成立的原理。令偶数内的任意整数为A(1≠A≠M-1),由A+(M-A)=M,令任意素因子为X,则A/X+(M-A)/X=M/X,(M-A)/X=M/X-A/X,当M/X的余数与A/X的余数相同时,M-A必然被X整除,M-A为含素因子X的合数或X本身;当M/X的余数不与A/X的余数相同时,M-A必然不能被素因子X整除,当A除以所有素因子的余数不与偶数除以所有素因子的余数相同时,A的对称数必然是素数或自身数1。由此得哥德巴赫猜想定理:在偶数内的任意整数A(1≠A≠M-1),当A除以所有素因子的余数,既不为0,也不与偶数除以所有素因子的余数相同时,A必然组成偶数的素数对。
《哥德巴赫猜想》在当代文学史上有哪些独特价值
在当代文学史上,《哥德巴赫猜想》具有里程碑式的意义,它开启了新时期报告文学创作的闸门。1978年1月徐迟在《人民文学》上发表以数学家陈景润为主人公的《哥德巴赫猜想》,引起了轰动效应,成为新时期报告文学的“报春燕”。《哥德巴赫猜想》描写的是命运长期被扭曲的普通知识分子。其诗化的叙述语言、生动感人的情节设置以及对知识分子的重新肯定等,勇敢地突破了“文革”十年强加于文艺的种种条框,从而使这部作品在当代报告文学史上具有了划时代标志性的意义和价值。报告文学这个闸门一旦打开便不可收拾,爆发出巨大的能量,出现了一大批眩人眼目、引起社会轰动的作家和作品,让报告文学这一文体的自足性和自立性逐步形成、逐步完善,确立了自己不可动摇的文学地位。 《哥德巴赫猜想》所开辟的科技题材、所塑造的科学家的典型,拓展了新时期文学的宽度和厚度,为科技题材创作和知识分子形象的刻画打开了新天地。《哥德巴赫猜想》还奠定了新时期报告文学的基本品质和底色、基调,甚至可以说是奠定了中国报告文学的基本规范。我们今天谈论报告文学,都应该回到《哥德巴赫猜想》这部经典作品上来。它对报告文学的规范意义体现在:直面现实,不回避矛盾,不回避问题,与时代同频共振;始终追求报告性、新闻性和艺术性、文学性的完美统一或完美融合。比如,有的研究者提出报告文学不能有想象性的描写,如果我们仔细阅读《哥德巴赫猜想》就会发现,其实报告文学需要而且存在着大量想象性的描写。而且,正是因为有了这种文学的想象和铺展,才让报告文学具有了更高的艺术品质。 除了文学史上的意义,《哥德巴赫猜想》在中国当代的思想史、文化史和科技史上都产生了巨大影响,推动了全社会的思想解放运动,宣告了科学春天的到来,甚至直接影响了党中央关于“科技是生产力”直至后来“科技是第一生产力”这一科学理念的提出。同时,《哥德巴赫猜想》也有力地改变了广大知识分子的命运,可以说,大批知识分子的平反,包括为之正名,以至于提出尊重知识尊重知识分子,都跟这部作品有关。在纪录片《历史转折中的邓小平》中我们能看到这种关联的证明。 《哥德巴赫猜想》对新时代科技题材创作有以下启示:一是必须强调报告文学的可读性、生动性、诗性,《哥德巴赫猜想》有时被当作一篇诗作,其中有很美的诗句般的描述。报告文学要重视人物的刻画,重视故事的讲述。这是最基本的创作启示。二是要将抽象、玄奥的科技术语和概念形象化。我们今天描写神舟上天、蛟龙下海、高铁、粒子对撞机、机器人、超算、量子通讯等尖端科技题材,都应该向《哥德巴赫猜想》学习,学习其如何把深奥的东西形象化,做到深入浅出,富于感染力。三是要紧扣社会现实,记录和表现这个时代,反映老百姓的心声。四是报告文学要坚持短、平、快、实、新、美的特点。我们说报告文学是轻骑兵,倡导短写、写短、写精,《哥德巴赫猜想》才一万八千多字,现在这样短篇幅的作品越来越少,这是应该引起警惕的问题。五是科技题材创作的难度和广阔空间,现在还有很多创作的空白需要我们不断去扩展,为科学文艺、报告文学注入源源不断的泉流。
哥德巴赫猜想是什么有什么意义吗
哥德巴赫猜想(Goldbach’s conjecture)是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。
用现代的数学语言,哥德巴赫猜想可以陈述为:任一大于2的偶数,都可表示成两个素数之和。
这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆。
哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破。目前最好的结果是陈景润在1973年发表的陈氏定理(也被称为“1+2”)。
意义
民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,然而初等数学无法解决哥德巴赫猜想。哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题。
扩展资料
背景
1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”
1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。
哥德巴赫猜想已经困扰了人类数十年,被证明了会有多大的意义
对数学、科学的发展具有推动作用。
哥德巴赫1742年给欧拉的信中提出猜想:任一大于2的整数可写成三质数之和。但是自己无法证明,于是请教欧拉帮忙证明,但是到死,欧拉无法证明。 数学界不使用“1是素数”的约定,原初猜想为:任一大于5的整数可写成三质数之和。
欧拉回信中也提出另一版本:任一大于2的偶数可写成两质数和。今日的猜想多为欧拉版本。把"任一充分大的偶数可表示为一个素因子的个数不超过a个的数与另一个素因子不超过b个数的和"记为"a+b"。1966年陈景润证明"1+2"成立,即"任一充分大的偶数都可表示成二素数之和,或是一个素数与一个半素数之和"。
今日猜想多欧拉的版本:任一大于2的偶数可表示为两个素数的和,也称“强哥德巴赫猜想”。从偶数的哥德巴赫猜想,推出:任何大于7的奇数能被写成三个奇质数之和。后者称为“弱哥猜想”。关于偶数的猜想是对的,关于奇数的猜想也应该是对的。2013年,贺欧夫各特发表论文,宣布证明弱哥德猜想。
哥德猜想是数论中的题目:任何大于2的偶数可写为两个质数之和。已经将近300年,没有人给出证明。提到哥德猜想证明,会想到陈景润。陈景润的1+2是最接近猜想的成果,1+2和1+2=不是一回事3,大偶数可些为1个质数和2个质数乘积之和。陈景润用筛法,证明猜想常用的方法。思路是证明大偶数可写成为m个质数的乘积与n个质数乘积之和,就是m+n,然后减小m、n的数值,将m和n减小到1,就证明猜想。
哥德巴赫猜想到底有什么现实意义
哥德巴赫猜想的现实意义:
哥德巴赫猜想不是一个弧立的数学问题。当年华罗庚教授倡导并组织研究这个难题,是有深邃的战略眼光的。因为它是带动解析数论、最终带动数学向前发展的重要推动力。如果孤立地看待哥德巴赫猜想,或把它当做一个数学游戏,可以随便猜一猜,那就偏了。
目前看来,“1+1”这颗灿烂的“明珠”并非距我们“一步之遥”,而仍在遥远的“天边”,在用今天最先进的“宇航工具”都不易到达的地方。
当代中外研究数论的专家终不能使“猜想”变为“定理”,实在不是由于他们不思努力、不想摘那“皇冠上的明珠”。数学理论有一个由粗到精的逻辑严密化过程,要靠长期的积累,有时会长达数十年,几百年,甚至上千年。
曾与其兄潘承洞在数论方面一起做出重大贡献的数学家、北大教授潘承彪感慨地说,搞数论研究的人谁不想摘取那颗“明珠”啊,但那只是一种理想,按目前国际数学界的理论发展水平,看来在相当时期内是难以达到的。
王元教授了《哥德巴赫猜想》一书,汇集了世界上最优秀的论文20篇。他在该书前言中写道:“可以确信,在哥德巴赫猜想的研究中,有待于将来出现一个全新的数学观念”。这,已成为中国数学界同仁的共识。
扩展资料
哥德巴赫猜想是数学中的一个古典难题,它可以表述为:凡大于等于4之偶数必为两个素数之和(“1+1”是它的简单表述,即一个素数加一个素数)。
1742年,德国数学家哥德巴赫发现这个现象后,由于无法用严格的数学方法证明命题的正确性,故只能称之为猜想。他写信给当时瑞士大数学家欧拉,请他证明。欧拉一直到离开人世也没证出来,但他相信这个猜想是对的。从此,中外数学家们高擎火炬、辈辈相承地研究这个难题。
本世纪以来,研究有了突破性进展:1920年,挪威数学家布朗证明出“9+9”;1956年,苏联数学家维诺格拉多夫证明了“3+3”;1957年,我国数学家王元证明出“2+3”;1962年,我国数学家潘承洞证明了“1+4”。
到1966年,数学家陈景润证明的“1+2”在世界数学界引起轰动。“陈氏定理”的内容是:充分大的偶数可表示为一个素数及一个不超过两个素数的乘积之和。这就是至今有关“猜想”证明的最好结果。
哥德巴赫猜想被证明,实际用处是什么
上个世纪70年代末,由于徐迟的一篇报告文学《哥德巴赫猜想》,让陈景润成了中国家喻户晓的科学家,也让哥德巴赫猜想成了在中国最著名的数学难题,激发了无数民间人士梦想成为陈景润第二。直到今天,在中文互联网上几乎每一个科学探索论坛都可以见到这些被戏称为“哥德巴赫猜想家”的人几年如一日孜孜不倦推销其证明的盛况。
哥德巴赫猜想的表述极为简单:任何一个大于2的偶数都可以表示成两个素数之和,例如4=2+2,6=3+3,8=3+5。小学生都看得懂这道题目,让人误以为其证明也会像中小学数学题那么简单,这是为什么有那么多没有受过专业数学训练,甚至只有中小学文化程度的人都自以为比大数学家更有能耐,灵机一动破解了这一超级难题。
由于哥德巴赫猜想通常被简写为“1+1”(一个素数加一个素数),这就让相当多的人误以为它要证明的是1+1=2,就未免让人疑惑证明它有什么用。徐迟在其报告文学中回答说:“大凡科学成就有这样两种:一种是经济价值明显,可以用多少万、多少亿元人民币来精确地计算出价值来的,叫做‘有价之宝’;另一种成就是在宏观世界、微观世界、宇宙天体、基本粒子、经济建设、国防科研、自然科学、辩证唯物主义哲学等等等等之中有这种那种作用,其经济价值无从估计,无法估计,没有数字可能计算的,叫做‘无价之宝’,例如,这个陈氏定理就是。”听上去怪吓人的,但是究竟有什么用,仍然是语焉不详。于是就有人对这个“无价之宝”展开了更具体的科学幻想。美国航天飞机试飞成功时,我就听到有人说,陈景润的证明被美国人用来制造航天飞机了,可惜咱中国人反倒不知道怎么用。
这当然只是幻想。数论属于所谓纯数学,而纯数学是不考虑是否有实际用途的,只是纯粹的智力游戏。在一些数学家(例如英国大数学家哈代)看来,纯数学才是真正的数学,就像绘画和诗歌,有着永恒的美,而应用数学则是丑陋和无趣的。常人能够欣赏绘画和诗歌之美,却难以理解数学之美。徐迟曾用了一连串的比喻赞叹陈景润论文之美:“何等动人的一页又一页篇章!这些是人类思维的花朵。这些是空谷幽兰、高寒杜鹃、老林中的人参、冰山上的雪莲、绝顶上的灵芝、抽象思维的牡丹。”这些空洞的语言不过反映了作家看不懂高深莫测的论文而产生的景仰之情。
所以纯粹的数学研究自古以来就一直遭受“有什么用”的质疑。并非只有中国人才特别功利,那个欧几里德用一块金币把质问“学几何有什么用”的学生打发走的著名故事,正说明西人也有这样的疑惑。区别只在于中国少有这种以研究无用的学问为荣的人。
也有的数学家认为纯数学总有一天也会有用。非欧几何的创始人之一、俄国数学家罗巴切夫斯基曾经说过:“没有哪个数学分支有一天会不被用于解决现实世界的问题,不管它是多么抽象。”在当时非欧几何还只是抽象的数学游戏,后来却被爱因斯坦用在了广义相对论,所以罗巴切夫斯基的预言至少在其开创的领域应验了。即使是纯之又纯的数论,现在也在密码学中获得了应用。
不过,即使是数学家恐怕也难以想象哥德巴赫猜想会有什么样的实际应用,除了证明它能够给证明者带来名誉和奖金之外。大部分的纯数学成果想必会一直保持其纯粹的状态,不会有应用价值。但是一项基础研究没有应用价值并非就没有价值,还可以有学术价值。有一些数学家认为,要证明哥德巴赫猜想需要创造出新的数学方法。新方法一旦被发明,还可以用到其他数学难题的证明,其中有的也许就有应用价值。技术应用有时不过是基础研究的副产品。
证明哥德巴赫猜想有什么意义
1、为了证明哥德巴赫猜想,人们提出了各种方法,大大推动了数论和整个数学的发展,并在博弈、工程、经济等各个领域得到应用;能够让人类的社会发展速度加快,而且推动了科技的发展。2、从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。***隐藏网址***
哥德巴赫猜想有意义吗如果被证明,能为人类带来什么
哥德巴赫猜想被誉为数学皇冠上的明珠,也是久负盛名的近代世界三大数学难题之一,自从提出至今快300年的时间,也没有人能够给出完整证明,可见其难证之程度。
哥德巴赫猜想是数学家哥德巴赫于写给欧拉的信中提出来的,在写给欧拉的信中,哥德巴赫提出了一个这样的猜想:任意一个大于5的奇数都可以写成三个素数之和。但是作为提出这一个猜想的人,哥德巴赫却没有能够给出证明,于是只好求助于大名鼎鼎的数学家欧拉。
欧拉这个人相信大家都有了解吧,被誉为数学王子的他的确名副其实,有人说,作为一个算法学家,欧拉从来没有被人超越过。但是遗憾的是,直到欧拉去世,他也没有能够证明哥德巴赫猜想,一直到现在,几百年过去了,哥德巴赫猜想也没有被完全证明。
哥德巴赫写信给欧拉,提出了一个著名的猜想,他发现随便取一个奇数,都可以把它写成三个素数的和,例如77=53+17+7,例如461=257+199+5,这样的例子太多了,随后哥德巴赫猜想,任何大于5的奇数都是三个素数之和。后来欧拉回信,他说这个命题看起来是正确的,但是他也给不出严格的证明,同时欧拉将这个命题深入一步,提出了任何一个大于2的偶数都可以写成两个素数之和,但是对于这个命题,他也不能给出证明。
中国数学家陈景润证明了“1+2”成立,也就是“任何一个充分大的偶数都可以表示成两个素数之和,或者是一个素数和一个半素数之和”。哥德巴赫猜想这么难以证明,那么如果成功证明,有什么意义呢?其实在没有证明之前,谁也不知道这到底有什么意义,但是在证明的过程中,可能会衍生新的数学分支,用于解决这一问题,这对于数学的发展意义重大,毕竟有了当前数学无法解决的问题,数学家们肯定得想,是否是因为当今的数学理论不能解决这一问题呢?
其实世界性的数学难题多了去了,而当今的数学界对于哥德巴赫猜想的研究兴趣却没有以前那么强烈了,倒是另外有一个猜想,同样也是世界性难题,那就是黎曼猜想,而黎曼猜想同样难以证明,提出百余年了,也没有被证明。在当代数学界中,普遍认为最有研究价值的问题就是黎曼猜想了,如果黎曼猜想能够被证明的话,那么很多问题就会迎刃而解,但是对于哥德巴赫猜想目前还不知道如果证明了将有何作用。只能说哥德巴赫猜想容易懂但是不好证明,但是黎曼猜想对于一般人而言,恐怕是都很难读懂,所以更多的人对于哥德巴赫猜想更关注。哥德巴赫猜想到底有什么现实意义啊对生活什么的有什么帮助啊
亲,哥德巴赫猜想对于我们眼前的现实生活没有任何意义。我的指的是柴米油盐酱醋茶的生活。但是,这类数学问题仍然有无数人穷其一生去研究,是因为数学是一切科学的表达语言。通俗地讲,数论的规律如果被找到,人类就可能了解到很多目前我们看来很玄奇的东西。如果用宗教意味浓一点的语言来表达,就是说“通过研究类似哥德巴赫猜想这类公理性的数学问题,从而找到上帝/佛祖/女娲……创造世界和我们时所使用的公式。”这样我们就能了解自己,了解世界,了解宇宙。众所周知,现代科学推论我们的宇宙寿命大约还剩150~200亿年。往远里说,人类在试着找到一种存续之法,看看能不能在这个宇宙毁灭后找到一个新的栖身繁衍之地。当然,这就太遥远了。所以说,哥德巴赫猜想有大意义,但没有小意义。它的意义是在宏观领域里的。要是硬说它有什么实际意义的话,那么只能说,一个能读懂并理解现有哥德巴赫猜想论文的人,他的数学一定是非常了不起的。
更多文章:
![惠普840g3上市的时候多少钱(二手笔记本(游戏本)现在性价比最高几款)](/static/images/nopic/14.jpg)
惠普840g3上市的时候多少钱(二手笔记本(游戏本)现在性价比最高几款)
2025年2月4日 01:10
![oppoa7x拆机换屏视频(oppoa7x手机屏掉了怎么办)](/static/images/nopic/25.jpg)
oppoa7x拆机换屏视频(oppoa7x手机屏掉了怎么办)
2024年12月21日 17:40
![华为nova4e麒麟710处理器怎么样(华为nova4e 6+128和nova4 8+128哪个好,各方面描述下)](/static/images/nopic/23.jpg)
华为nova4e麒麟710处理器怎么样(华为nova4e 6+128和nova4 8+128哪个好,各方面描述下)
2024年4月20日 08:00
![华为解锁码申请网址打不开(华为解锁网站进不去了,该怎么解锁)](/static/images/nopic/3.jpg)
华为解锁码申请网址打不开(华为解锁网站进不去了,该怎么解锁)
2024年4月14日 05:20
![川崎250四缸国内售价(川崎这款四缸250也接受预定了,看到价格后,车友:累觉不爱)](/static/images/nopic/22.jpg)
川崎250四缸国内售价(川崎这款四缸250也接受预定了,看到价格后,车友:累觉不爱)
2024年7月1日 02:00
![家庭功放机什么牌子好家庭功放机配置方案?雅马哈功放机怎么样雅马哈功放机价格](/static/images/nopic/13.jpg)
家庭功放机什么牌子好家庭功放机配置方案?雅马哈功放机怎么样雅马哈功放机价格
2024年4月14日 00:00
![二手索尼笔记本电脑能卖多少钱(2012年买的索尼笔记本电脑当时买了六千多,现在想转手,大概能卖多少钱)](/static/images/nopic/8.jpg)
二手索尼笔记本电脑能卖多少钱(2012年买的索尼笔记本电脑当时买了六千多,现在想转手,大概能卖多少钱)
2024年10月16日 01:10
![matebook e 参数(华为matepadpro12.6英寸和matebookego)](/static/images/nopic/30.jpg)
matebook e 参数(华为matepadpro12.6英寸和matebookego)
2024年5月26日 07:00
![优畅享20处理器(荣耀畅玩30plus8+128和优畅享206+128哪个好)](/static/images/nopic/30.jpg)
优畅享20处理器(荣耀畅玩30plus8+128和优畅享206+128哪个好)
2024年3月25日 07:30
![5800官方指导价(北京现代ix252020款落地价是多少钱北京现代ix25价格)](/static/images/nopic/13.jpg)
5800官方指导价(北京现代ix252020款落地价是多少钱北京现代ix25价格)
2025年2月4日 02:50