bootloader怎么读(android bootloader lk阶段能读取文件吗)
本文目录
android bootloader lk阶段能读取文件吗
1.主要功能,红色部分是android特有的一些功能,如fastboot,recovery模式等:* Variety of nand devices for bootup* USB driver to enable upgrading images over usb during development* Keypad driver to enable developers enter ‘fastboot’ mode for image upgrades* Display driver for debugging and splash screen* Enable Android recovery image and image upgrades 2.配置dram内存大小,供linux kernel使用The memory tags can be customized inlk/target/《target_name》/atags.c 3.fastboot模式,可以自行打开或者关闭如,在boot中关闭按键或者usb 驱动,都可以达到此目的相关文件k/app/aboot/fastboot.clk/app/aboot/aboot.c 4.MTD block setting可以配置各个mtd image 分区在如下 文件中lk\target\tcc8900_evm\init.cstatic struct ptentry board_part_list 5.打开或者关闭splash screen in the bootloaderDISPLAY_SPLASH_SCREEN功能可以来打开关闭开机时候,boot会从’splash’ MTD分区中读取原始的文件到framebuffer中显示,所以也需要加载display 的驱动入口函数在 kernel/main.c 中的 kmain(), 以下就来读读这一段 code. void kmain(void) { // get us into some sort of thread context thread_init_early(); // early arch stuff arch_early_init(); // do any super early platform initialization platform_early_init(); // do any super early target initialization target_early_init(); dprintf(INFO, "welcome to lk/n/n"); // deal with any static constructors dprintf(SPEW, "calling constructors/n"); call_constructors(); // bring up the kernel heap dprintf(SPEW, "initializing heap/n"); heap_init(); // initialize the threading system dprintf(SPEW, "initializing threads/n"); thread_init(); // initialize the dpc system dprintf(SPEW, "initializing dpc/n"); dpc_init(); // initialize kernel timers dprintf(SPEW, "initializing timers/n"); timer_init(); #if (!ENABLE_NANDWRITE) // create a thread to complete system initialization dprintf(SPEW, "creating bootstrap completion thread/n"); thread_resume(thread_create("bootstrap2", &bootstrap2, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); // enable interrupts exit_critical_section(); // become the idle thread thread_become_idle(); #else bootstrap_nandwrite(); #endif } In include/debug.h: 我们可以看到 dprintf 的第一个参数是代表 debug level./* debug levels */ #define CRITICAL 0 #define ALWAYS 0 #define INFO 1 #define SPEW 2 In include/debug.h: view plainprint?#define dprintf(level, x...) do { if ((level) 《= DEBUGLEVEL) { _dprintf(x); } } while (0) 所以 dprintf 会依 DEBUGLEVEL 来判断是否输出信息. 来看第一个 call 的函数: thread_init_early, define in thread.c view plainprint?void thread_init_early(void) { int i; /* initialize the run queues */ for (i=0; i 《 NUM_PRIORITIES; i++) list_initialize(&run_queue); /* initialize the thread list */ list_initialize(&thread_list); /* create a thread to cover the current running state */ thread_t *t = &bootstrap_thread; init_thread_struct(t, "bootstrap"); /* half construct this thread, since we’re already running */ t-》priority = HIGHEST_PRIORITY; t-》state = THREAD_RUNNING; t-》saved_critical_section_count = 1; list_add_head(&thread_list, &t-》thread_list_node); current_thread = t; } #define NUM_PRIORITIES 32 in include/kernel/thread.h list_initialize() defined in include/list.h: initialized a list view plainprint?static inline void list_initialize(struct list_node *list) { list-》prev = list-》next = list; } run_queue 是 static struct list_node run_queue thread_list 是 static struct list_node thread_list 再来要 call 的函数是: arch_early_init() defined in arch/arm/arch.c view plainprint?void arch_early_init(void) { /* turn off the cache */ arch_disable_cache(UCACHE); /* set the vector base to our exception vectors so we dont need to double map at 0 */ #if ARM_CPU_CORTEX_A8 set_vector_base(MEMBASE); #endif #if ARM_WITH_MMU arm_mmu_init(); platform_init_mmu_mappings(); #endif /* turn the cache back on */ arch_enable_cache(UCACHE); #if ARM_WITH_NEON /* enable cp10 and cp11 */ uint32_t val; __asm__ volatile("mrc p15, 0, %0, c1, c0, 2" : "=r" (val)); val |= (3《《22)|(3《《20); __asm__ volatile("mcr p15, 0, %0, c1, c0, 2" :: "r" (val)); /* set enable bit in fpexc */ val = (1《《30); __asm__ volatile("mcr p10, 7, %0, c8, c0, 0" :: "r" (val)); #endif } 现代操作系统普遍采用虚拟内存管理(Virtual Memory Management)机制,这需要处理器中的MMU(Memory Management Unit, 内存管理单元)提供支持。 CPU执行单元发出的内存地址将被MMU截获,从CPU到MMU的地址称为虚拟地址(Virtual Address,以下简称VA),而MMU将这个地址翻译成另一个地址发到CPU芯片的外部地址引脚上,也就是将VA映射成PA MMU将VA映射到PA是以页(Page)为单位的,32位处理器的页尺寸通常是4KB。例如,MMU可以通过一个映射项将VA的一页 0xb7001000~0xb7001fff映射到PA的一页0x2000~0x2fff,如果CPU执行单元要访问虚拟地址0xb7001008,则实际访问到的物理地址是0x2008。物理内存中的页称为物理页面或者页帧(Page Frame)。虚拟内存的哪个页面映射到物理内存的哪个页帧是通过页 表(Page Table)来描述的,页表保存在物理内存中,MMU会查找页表来确定一个VA应该映射到什么PA。 操作系统和MMU是这样配合的: 1. 操作系统在初始化或分配、释放内存时会执行一些指令在物理内存中填写页表,然后用指令设置MMU,告诉MMU页表在物理内存中 的什么位置。 2. 设置好之后,CPU每次执行访问内存的指令都会自动引发MMU做查表和地址转换操作,地址转换操作由硬件自动完成,不需要用指令 控制MMU去做。 MMU除了做地址转换之外,还提供内存保护机制。各种体系结构都有用户模式(User Mode)和特权模式(Privileged Mode)之分, 操作系统可以在页表中设置每个内存页面的访问权限,有些页面不允许访问,有些页面只有在CPU处于特权模式时才允许访问,有些页面 在用户模式和特权模式都可以访问,访问权限又分为可读、可写和可执行三种。这样设定好之后,当CPU要访问一个VA时,MMU会检查 CPU当前处于用户模式还是特权模式,访问内存的目的是读数据、写数据还是取指令,如果和操作系统设定的页面权限相符,就允许访 问,把它转换成PA,否则不允许访问,产生一个异常(Exception)常见的 segmentation fault 产生的原因: 用户程序要访问一段 VA, 经 MMU 检查后无权访问, MMU 会产生异常, CPU 从用户模式切换到特权模式, 跳转到内核代码中执行异常服务程序. 内核就会把这个异常解释为 segmentation fault, 将引发异常的程序终止.
什么是手机bootloader,这个是什么意思,请大家帮帮忙
简单地说,BootLoader就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间映射图,从而将系统的软硬件环境带到一个合适状态,以便为最终调用操作系统内核准备好正确的环境。在嵌入式系统中,通常并没有像BIOS那样的固件程序(注,有的嵌入式CPU也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由BootLoader来完成。比如在一个基于ARM7TDMI core的嵌入式系统中,系统在上电或复位时通常都从地址0x00000000处开始执行,而在这个地址处安排的通常就是系统的BootLoader程序。Redboot Redboot是Redhat公司随eCos发布的一个BOOT方案,是一个开源项目。 当前Redboot的最新版本是Redboot-2.0.1,Redhat公司将会继续支持该项目。 Redboot支持的处理器构架有ARM,MIPS,MN10300,PowerPC, Renesas SHx,v850,x86等,是一个完善的嵌入式系统Boot Loader。 Redboot是在ECOS的基础上剥离出来的,继承了ECOS的简洁、轻巧、可灵活配置、稳定可靠等品质优点。它可以使用X-modem或Y-modem协议经由串口下载,也可以经由以太网口通过BOOTP/DHCP服务获得IP参数,使用TFTP方式下载程序映像文件,常用于调试支持和系统初始化(Flash下载更新和网络启动)。Redboot可以通过串口和以太网口与GDB进行通信,调试应用程序,甚至能中断被GDB运行的应用程序。Redboot为管理FLASH映像,映像下载,Redboot配置以及其他如串口、以太网口提供了一个交互式命令行接口,自动启动后,REDBOOT用来从TFTP服务器或者从Flash下载映像文件加载系统的引导脚本文件保存在Flash上。当前支持单板机的移植版特性有: - 支持ECOS,Linux操作系统引导 - 在线读写Flash - 支持串行口kermit,S-record下载代码 - 监控(minitor)命令集:读写I/O,内存,寄存器、 内存、外设测试功能等 Redboot是标准的嵌入式调试和引导解决方案,支持几乎所有的处理器构架以及大量的外围硬件接口,并且还在不断地完善过程中。ARMboot ARMboot是一个ARM平台的开源固件项目,它特别基于PPCBoot,一个为PowerPC平台上的系统提供类似功能的姊妹项目。鉴于对PPCBoot的严重依赖性,已经与PPCBoot项目合并,新的项目为U-Boot。 ARMboot发布的最后版本为ARMboot-1.1.0,2002年ARMboot终止了维护。 ARMboot支持的处理器构架有StrongARM ,ARM720T ,PXA250 等,是为基于ARM或者StrongARM CPU的嵌入式系统所设计的。 ARMboot的目标是成为通用的、容易使用和移植的引导程序,非常轻便地运用于新的平台上。ARMboot是GPL下的ARM固件项目中唯一支持Flash闪存,BOOTP、DHCP、TFTP网络下载,PCMCLA寻线机等多种类型来引导系统的。特性为: -支持多种类型的FLASH -允许映像文件经由BOOTP、DHCP、TFTP从网络传输; -支持串行口下载S-record或者binary文件 -允许内存的显示及修改 -支持jffs2文件系统等 Armboot对S3C44B0板的移植相对简单,在经过删减完整代码中的一部分后,仅仅需要完成初始化、串口收发数据、启动计数器和FLASH操作等步骤,就可以下载引导uClinux内核完成板上系统的加载。总得来说,ARMboot介于大、小型Boot Loader之间,相对轻便,基本功能完备,缺点是缺乏后续支持。U-Boot U-Boot是由开源项目PPCBoot发展起来的,ARMboot并入了PPCBoot,和其他一些arch的Loader合称U-Boot。2002年12月17日第一个版本U-Boot-0.2.0发布,同时PPCBoot和ARMboot停止维护。 U-Boot自发布以后已更新6次,最新版本为U-Boot-1.1.1,U-Boot的支持是持续性的。 U-Boot支持的处理器构架包括PowerPC (MPC5xx,MPC8xx,MPC82xx,MPC7xx,MPC74xx,4xx), ARM (ARM7,ARM9,StrongARM,Xscale),MIPS (4Kc,5Kc),x86等等, U-Boot(Universal Bootloader)从名字就可以看出,它是在GPL下资源代码最完整的一个通用Boot Loader。 U-Boot提供两种操作模式:启动加载(Boot loading)模式和下载(Downloading)模式,并具有大型Boot Loader的全部功能。主要特性为: -SCC/FEC以太网支持 -BOOTP/TFTP引导 -IP,MAC预置功能 -在线读写FLASH,DOC, IDE,IIC,EEROM,RTC -支持串行口kermit,S-record下载代码 -识别二进制、ELF32、pImage格式的Image,对Linux引导有特别的支持 -监控(minitor)命令集:读写I/O,内存,寄存器、内存、外设测试功能等 -脚本语言支持(类似BASH脚本) -支持WatchDog,LCD logo,状态指示功能等 U-Boot的功能是如此之强大,涵盖了绝大部分处理器构架,提供大量外设驱动,支持多个文件系统,附带调试、脚本、引导等工具,特别支持Linux,为板级移植做了大量的工作。U-Boot1.1.1版本特别包含了对SA1100和44B0芯片的移植,所以44B0移植主要是针对Board 的移植,包括FLASH、内存配置以及串口波特率等等。U-Boot的完整功能性和后续不断的支持,使系统的升级维护变得十分方便。Blob Blob(Boot Loader Object)是由Jan-Derk Bakker and Erik Mouw发布的,是专门为StrongARM 构架下的LART设计的Boot Loader。 Blob的最后版本是blob-2.0.5。 Blob支持SA1100的LART主板,但用户也可以自行修改移植。 Blob也提供两种工作模式,在启动时处于正常的启动加载模式,但是它会延时 10 秒等待终端用户按下任意键而将 Blob 切换到下载模式。如果在 10 秒内没有用户按键,则 Blob 继续启动 Linux 内核。其基本功能为: 初始化硬件(CPU速度,存储器,中断,RS232串口) -引导Linux内核并提供ramdisk - 给LART下载一个内核或者ramdisk -给FLASH片更新内核或者ramdisk -测定存储配置并通知内核 -给内核提供一个命令行 Blob功能比较齐全,代码较少,比较适合做修改移植,用来引导Liunx,目前大部分S3C44B0板都用Blob修改移植后来加载uClinux。Bios-lt Bios-lt是专门支持三星(Samsung)公司ARM构架处理器S3C4510B的Loader,可以设置CPU/ROM/SDRAM/EXTIO,管理并烧写FLASH,装载引导uClinux内核。这是国内工程师申请GNU通用公共许可发布的。 Bios-lt的最新版本是Bios-lt-0.74,另外还提供了S3C4510B的一些外围驱动。Bootldr Bootldr是康柏(Compaq)公司发布的,类似于compaq iPAQ Pocket PC,支持SA1100芯片。它被推荐用来引导Llinux,支持串口Y-modem协议以及jffs文件系统。 Bootldr的最后版本为Bootldr-2.19。
更多文章:

skyworth是什么牌子电视(skyworks是什么品牌电视)
2024年5月28日 02:00

乔布斯发布会ppt(学做乔布斯简洁风格单色Powerpoint文档)
2025年1月24日 10:10

荣耀70pro能升级鸿蒙系统吗(荣耀70pro用的什么系统啊)
2024年5月24日 09:30

清华同方s5笔记本(清华同方的锋锐s5开机怎么设置u盘启动啊,有知道这款电脑的,并且亲自装过的回答下,谢谢)
2024年9月29日 19:40

二手索尼笔记本电脑能卖多少钱(2012年买的索尼笔记本电脑当时买了六千多,现在想转手,大概能卖多少钱)
2024年10月16日 01:10

英特尔核芯显卡控制面板怎么找不到(英特尔显卡控制面板怎么下载)
2025年1月20日 10:10

sbsettings插件怎么下载(ipad锁屏后断网怎么办)
2024年11月19日 03:50

thinkpad联想游戏本(ThinkPad t480s怎么样值得购买吗)
2025年1月6日 05:30